

Efectis Nederland BV P.O. Box 554 | 2665 ZN Bleiswijk Brandpuntlaan Zuid 16 | 2665 NZ Bleiswijk The Netherlands +31 88 3473 723 nederland@efectis.com

Determination of smoke control according to EN 1634-3:2004 + C1:2007 of metal vertical shutter type " B " manufactured by GORTER GROUP BV

Report no.	2023-Efectis-R000940
Sponsor	Gorter Group BV P.O. Box 265 1740 AG SCHAGEN THE NETHERLANDS
Prepared by	Efectis Nederland BV
Notified body no.	1234
Author(s)	F. Mishahrawi B.Sc. G.M. Klijn B.Sc.
Project number	ENL-23-000364
Date of issue	September 2023
Number of pages	25

All rights reserved.

No part of this publication may be reproduced and/or published without the previous written consent of Efectis Nederland BV. Submitting the report for inspection to parties who have a direct interest is permitted.

Page 1 / 25

CONTENTS

1.	General	3
1.1	1 Report	3
1.2	2 Subject	3
1.:	3 Investigation	3
1.4	4 Sponsor and manufacturer	3
1.	5 Location and date regarding the examination	3
1.0	6 Normative references	4
1.	7 Revision information	4
2.	Test specimen	4
2.	1 General	4
2.2	2 Test specimen	4
2.3	3 Method of assembly	8
3.	Assembly and manufacturing of the construction	8
4.	Research method	8
4.	1 Verification of the specimen	8
4.2	2 Conditioning of test specimen	8
4.3	3 Pre-test examination and preparation	9
4.4	4 Leakage test	9
4.	5 Smoke test	10
5.	Results of the Smoke Controle test	11
5.	1 Observations during heating	11
5.2	2 Ability to open specimen after medium temperature test	11
5.3	3 Test results	11
5.4	4 Photographs	11
5.	5 Uncertainty of measurement	12
6.	Summary of the test results	12
6.	1 Summary of tested specimen	12
6.2	2 Summary of test results	12
7.	Field of direct application of test results	12
7.	1 General	12
7.2	2 Construction of assembly	13
7.3	3 Size and aspect ratio	13
7.4	4 Hardware and fittings	14
7.	5 Seals	14
8.	Drawings	15
Appe	endix A: Measurement of test conditions	16
Арре	endix B: Measurements of the specimens	23
Appe	endix C: Photographs	24

1. GENERAL

1.1 REPORT

This report details the method of construction, the test conditions and the results obtained when the specific element of construction described herein was tested following the procedure outlined in EN 1363-1:2020, and where appropriate EN 1363-2:1999 + C1:2001. Any significant deviation with respect to size, constructional details, loads, stresses, edge or end conditions other than those allowed under the field of direct application in the relevant test method is not covered by this report.

1.2 SUBJECT

Test of a vertical shutter, opened away from the exposed side, manufactured by Gorter Group BV.

1.3 INVESTIGATION

Determination of smoke resistance according to EN 1634-3:2004/C1:2007: Fire resistance tests for door and shutter assemblies - Part 3: Smoke control doors and shutters

The specimen was tested at ambient and medium temperature as described in EN 1634-3:2004/ C1:2007.

The construction was tested for one side for leakage at ambient (S_a) together with medium temperature (S_m) with the shutter leaf opening away from the exposed side.

1.4 SPONSOR AND MANUFACTURER

Table 1.1: Sponsor and manufacturer

Sponsor and manufacturer	Gorter Group BV P.O. Box 265 1740 AG SCHAGEN THE NETHERLANDS
	THE NETHERLANDS

1.5 LOCATION AND DATE REGARDING THE EXAMINATION

The research was conducted at the laboratory of Efectis Nederland BV in Bleiswijk, the Netherlands.

Table 1.2: Date of the examination

Notified body number	1234
Assembly-of the test specimen	24 th of July 2023
Smoke control test	25 th of July 2023

1.6 NORMATIVE REFERENCES

Table 1.3: Normative references

European standard	Part
EN 1363-1:2020	Fire resistance tests – Part 1: General requirements
EN 1634-3:2004 + C1:2007	Fire resistance tests for door and shutter assemblies - Part 3: Smoke control doors and shutters
EN 16034:2014	Pedestrian doorsets, industrial, commercial, garage doors and openable windows – Product standard, performance characteristics – Fire resisting and/or smoke control characteristics
Egolf position paper	006-2019

1.7 REVISION INFORMATION

This is the first issue of the test report.

2. TEST SPECIMEN

2.1 GENERAL

For the dimensions and specifications of the materials and components of the examined construction, also see the figures in chapter 8. Details of the assembly of the construction are given in the paragraphs below.

The tested specimen data were supplied by the Sponsor to the Test Laboratory on his own initiative, in conformity with paragraph 12 of standard EN 1363-1: 2020. The laboratory performed a detailed examination of the test specimen prior to testing and verified the accuracy of the information provided.

2.2 TEST SPECIMEN

The test specimen was a metal vertical shutter of type ' B ' consisting of metal vertical shutter mounted in metal frame. The shutter was surrounded with intumescent strip components manufactured by Gorter Group BV.

The shutter leaf opened away from the exposed side. The shutter was built into an associated supporting construction.

2.2.1 Test Frame

The test frame was constructed of hollow steel profiles with an aperture of $3.4 \times 3.4 \text{ m}$ (w x h) and an insertion width of 100 mm.

2.2.2 Supporting Construction

The test specimen was built into an associated supporting construction, being a one layer of gypsum board of 12.5 mm for each side screwed to a metal stud construction and sealed from the edges.

Table 2.1: Specifications supporting construction

Specifications associated supporting construction according to EN 1363-1 table 1	
Overall dimensions	3500 x 3500 x 100 mm (w x h x t)
Aperture	900 x 900 mm (w x h)

Materials	Plasterboard: type "A",12.5 mm (EN 520) Steel profiles: Rolled steel U- track and C studs profiles.
Manufacturers of components	Plasterboard: Gyproc Steel profiles: Gyproc
Number of layers plasterboard	One layer of 12.5 mm plasterboard on both sides
Fixing	Both layers were fixed with galvanized gypsum board screws at a c.t.c distance of max. 300 mm

2.2.3 Shutter

Specifications shutter	
Manufacturer	Gorter Group
Туре	Wall shutter type B
Product name	Wall shutter type B, 120 minutes fire resistance.
Material	Steel
Dimensions	Shutter in- in (800 x 800) mm (w x h) Outer out-out (900 x 900) mm (w x h)
Function	Access door.
Fixing	Screwed to the metal stud

2.2.4 Sealant

Specifications sealant	
Manufacturer	Zwaluw
Туре	Acryl Exterior+
Product name	Zwaluw Acryl exterieur+
Material	Acrylaatdispersie

Dimensions	310 ml (Koker)
Position	Sealing the gap between the metal stud and wall, And the gap between the vertical shutter and supporting construction.
Function	Sealing the gaps.

2.2.5 Metal profile

Specifications metal profile	
Manufacturer	Gyproc
Туре	C75
Product name	Metal profile
Material	steel
Dimensions	75 x 3600 mm
Position	Inside supporting construction.
Function	Assembled to make frame wall

2.2.6 Gypsum board

Specifications gypsum board	
Manufacturer	Gyproc
Туре	Plasterboard: type "A",12,5 mm (EN 520)
Product name	Gypsum board
Material	Gypsum
Dimensions	3600 x 1200 x 12,5 mm
Function	Wall cladding.
Fixing	Screwed to the metal stud

2.2.7 Vapour tight

Specifications vapour tight		
Manufacturer	PE Bouwfol	
Туре	Т200	
Product name	Bouwfolie	
Material	Transparant polyethylene film	

Dimensions	(3x 50) m (w x l)
Position	Between metal stud and plasterboard
Function	Vapour tight lay in the wall
Fixing	Duct tape

2.2.8 Screws

Specifications screws		
Manufacturer	A.S.F. Fischer	
Туре	Fis Fix	
Product name	Gypsum screw	
Material	Steel	
Dimensions	3.5 x 35 mm	
Function	Fixing plasterboard to the metal profile	

2.2.9 Seal

Manufacturer	Kelfort D-profile
Туре	Mosrubber D profile
Product name	D profile
Material	Cellular rubber
Dimensions	Kelfort D-profile

Position	Fixed between metal profile and supporting construction
Function	Airtight

2.2.10 Tape

Specifications tape		
Manufacturer	KIP	
Туре	3824	
Product name	Duct tape	
Dimensions	50 mm x 50m1	
Function	Airtight between supporting construction and frame	

2.3 METHOD OF ASSEMBLY

The test specimen was built in the following order:

- Supporting construction was built in the empty frame.
- The vertical shutter was installed in the centre of the supporting construction.

3. ASSEMBLY AND MANUFACTURING OF THE CONSTRUCTION

Efectis Nederland BV	Test frame
Gorter Group BV	Assembly and manufacturing of support construction and specimen

4. RESEARCH METHOD

4.1 VERIFICATION OF THE SPECIMEN

The materials and components used were inspected during assembly on the basis of the supplied drawings and data. Efectis Nederland BV was not involved in the selection or sampling of the materials.

Efectis Nederland BV received samples of materials used in the construction of the specimen to determine the density and moisture content.

4.2 CONDITIONING OF TEST SPECIMEN

4.2.1 Mechanical conditioning

From the moment of assembly until the smoke resistance test the specimen was stored in the laboratory of Efectis Nederland BV under the following conditions.

Table 4.1: Laboratory conditions during conditioning

Laboratory conditions during conditioning	
Ambient temperature:	20 ± 5°C
Relative humidity:	50 ± 10 %

4.2.2 Density and moisture content

The density and the moisture content of materials and components used during assembly was determined by Efectis Nederland BV.

Efectis Nederland BV received samples of materials used in the construction of the specimen to determine the density and moisture content.

Table 4.2: Density and m	oisture content
--------------------------	-----------------

Material	Density [kg/m³] (information provided by sponsor)	Density [kg/m³] (as determined by Efectis)	Moisture content [%] (as determined by Efectis)
Plasterboard	800	719	0,6

Note: The presented moisture content is calculated based on the dry weight of the product which is in line with international guidelines.

4.3 PRE-TEST EXAMINATION AND PREPARATION

4.3.1 Closing forces

The shutter was not provided with a closing device. Therefore, no closing force was measured.

4.3.2 Open and close cycle

Prior to the smoke leakage test, the shutter was opened and closed 10 times according to EN 1634-3/C1. The shutter was opened to a 30-degree position and then closed again by hand.

4.3.3 Locking

The shutter was locked with its own latch mechanism during the smoke test. Keys were removed from the lock.

4.3.4 Gap measurements

The length of the gap between the shutter leaf and frame was 3200 mm measured from four sides. Prior to the smoke test the gap widths were measured. The measured gap widths are given in chapter 8.

4.4 LEAKAGE TEST

4.4.1 Determination of apparatus leakage rate

In accordance with EN 1634-3/C1 prior to the smoke test the leakage rate of the apparatus was determined:

The leakage rate through the test chamber at ambient temperature (20°C)

- At $\Delta 10$ Pa was 1.1 m³/h.
 - At $\triangle 25$ Pa was 2.4 m³/h.
 - At \triangle 50 Pa was 3.8 m³/h.

Efectis Nederland BV 2023-Efectis-R000940 September 2023 Gorter Group BV

The leakage rate through the test chamber at medium temperature (200°C):

- At $\Delta 10$ Pa was 1.5 m3/h.
- At ∆25 Pa was 0.0 m3/h.
- At ∆50 Pa was 0.0 m3/h.

4.5 SMOKE TEST

4.5.1 Laboratory conditions

During the smoke resistance investigation, the test conditions in the laboratory were as given below.

Table 4.3: Laboratory conditions during smoke test

Laboratory conditions		
Ambient temperature:	10 - 40°C	
Relative humidity:	50 ± 10 %	

4.5.2 Test conditions

The conditions during the smoke leakage test were according to EN 1363-1.

4.5.3 Procedure of determination of total leakage rate

The average air temperature close to the face of the shutter was raised from ambient temperature to a stabilisation temperature of 200 °C in such a manner that the average air temperature is maintained as described in EN 1634-3. The temperature distribution over the face of the shutter was 200 °C. During the heating up period the pressure in the bottom of the test chamber was maintained below 20 Pa for the first 5 minutes and 10 Pa for the rest of the duration. After 5 minutes, the outlet valve was closed, and the stable conditions are achieved again. The pressure after achieving stable conditions was 20 Pa. See graphs annex B.

- The total leakage rate at ambient temperature (20°C) for side A was:
 - At Δ 10 Pa \rightarrow 2.7 m³/h
 - At Δ 25 Pa \rightarrow 5.5 m³/h
 - At Δ 50 Pa \rightarrow 9.4 m³/h
 - •
- The total leakage rate at medium temperature (200°C) for side A was:
 - At Δ 10 Pa \rightarrow 9 m³/h
 - At Δ 25 Pa \rightarrow 11.2 m³/h
 - At Δ 50 Pa \rightarrow 14.6 m³/h

4.5.4 Pressure

The total leakage rate was measured at pressure differences of $\Delta 10$ Pa, $\Delta 25$ Pa and $\Delta 50$ Pa pressure was measured at 1182 mm in relation to the sill level.

4.5.5 Measurements

During the smoke test the following data was measured and registered:

Environment (measurements are given in appendix A)

• The temperature in the laboratory outside the smoke chamber.

Smoke chamber conditions (measurements are given in appendix A)

- The air temperature inside the smoke chamber
- The pressure in the smoke chamber.

Air flow (measurements are given in appendix B)

- Air flow rate at ambient temperature;
- Air flow at medium temperature.

Specimen (measurements are given in appendix B)

The positions of deflection measurements are given in appendix B.

5. RESULTS OF THE SMOKE CONTROLE TEST

5.1 OBSERVATIONS DURING HEATING

5.2 ABILITY TO OPEN SPECIMEN AFTER MEDIUM TEMPERATURE TEST

After the medium temperature test, it was possible to open the specimen.

5.3 TEST RESULTS

Test results for the specimen(s) are given in Appendix B

5.4 PHOTOGRAPHS

Photographs taken during construction and after the smoke test are shown in appendix C.

5.5 UNCERTAINTY OF MEASUREMENT

Because of the nature of smoke resistance testing and the consequent difficulty in quantifying the uncertainty of measurement of smoke resistance, it is not possible to provide a stated degree of accuracy of the result.

6. SUMMARY OF THE TEST RESULTS

6.1 SUMMARY OF TESTED SPECIMEN

The smoke resistance was determined of a metal vertical shutter of type 'B' consisting of metal vertical shutter mounted in metal frame. The shutter was surrounded with intumescent strip components manufactured by Gorter Group BV.

The shutter leaf opened away from the exposed side. The shutter was built into a flexible supporting construction.

The smoke test was conducted according to EN 1634-3:2001/C1:2001.

6.2 SUMMARY OF TEST RESULTS

6.2.1 Performances

No of test	Face exposed to pressure	Temperature	*Leakage rate Q _{spec} ⁽²⁰⁾ (m³/h) at			^{**} Linear leakage rate Q _I (m³/h/m) at		
			10 Δ Pa	25 ∆ Pa	50 ∆ Pa	10 ∆ Pa	25 ∆ Pa	50 ∆ Pa
1	Side A	Ambient	1.6	3.1	5.6	0.5	0.96	1.75
3	Side A	Medium	7.5	11.2	14.6	n.a.	n.a.	n.a.

Table 6.1: Summary of test results ambient together with medium temperature

* (minus leakage rate mentioned in 4.4.1)

* (divided by gap length mentioned in 4.3.5)

Table 6.2: Other performances

Performances	Criteria	Pass or fail?		
Smoke leakade	Maximum leakage rate measured at ambient temperature	Pass		
Shioke leakage	Maximum leakage rate measured at both ambient temperature and 200 °C	Pass		

7. FIELD OF DIRECT APPLICATION OF TEST RESULTS

7.1 GENERAL

The field of direct application of test results is restricted to the allowable changes which a sponsor may make to the tested specimen following a successful smoke leakage test. These variations may be introduced automatically without the need for the sponsor to seek additional evaluation, calculation or approval. The results of the leakage test continue to apply to assemblies of a different construction subject to the following:

- a) The assembly is of a similar generic construction, e.g. a solid timber leaf in a timber frame or a folded sheet metal leaf in a steel frame.
- b) The mode of operation is identical, e.g. single swing, double swing, roller shutter or folding leaf.
- c) In the case of assemblies that only require a restriction in the leakage rate from one direction only then the direction does not vary from that tested.
- d) The stiffness of the supporting construction and the method of fixing and sealing the frame to the supporting or associated construction shall not be less than that of the tested construction (this may be the specimen frame in some furnaces).

Doors tested in a flexible construction may be installed into rigid constructions but not *vice-versa*. Doors tested in a flexible construction to achieve ambient temperature classification S_a may be installed in alternative flexible constructions. The use of alternative flexible constructions for doors with S_m classification will be the subject of extended application considerations.

7.2 CONSTRUCTION OF ASSEMBLY

7.2.1 General

- a) Decorative finishes such as paints may be varied.
- b) The clearance gaps between components may be varied but shall not be greater than those in the tested assembly and where gaps are smaller they shall not impair the ability of the leaf/leaves/curtain to close, especially in cases where both leaves of hinged or pivoted door assemblies are opened or closed simultaneously.
- c) Threshold gaps protected by active drop seals may be varied within the movement range specified by the seal manufacturer.

7.2.2 Hinged or pivoted leaf assemblies

7.2.2.1 Metal leaves

a) The door leaf shall be constructed in an identical manner and material, i.e. pan and tray, and the method of jointing shall be identical and any stiffening is not reduced, and for ambient temperature (S_a) only applications the stiffening may be increased.

NOTE 1 For medium temperature (S_{200}) smoke leakage rates the stiffening should not be varied as any increase in stiffness may result in higher temperature transfer and/or increased bowing.

b) The door leaf may incorporate additional insulation materials if the assembly is to resist the spread of ambient smoke but extra insulation material shall not be incorporated in door leaves designed to resist medium temperature (S₂₀₀) smoke.

NOTE 2 Extra insulation material leads to increased thermal differentials which invariably result in increased distortion.

7.3 SIZE AND ASPECT RATIO

7.3.1 Hinged and pivoted leaf assemblies

7.3.1.1

The leaf size shall not be increased but may be reduced providing that the number of any movement restrictors such as locks, latches and hinges is not decreased (but may be increased).

Efectis Nederland BV 2023-Efectis-R000940 September 2023 Gorter Group BV

7.3.1.2

The aspect ratio of the leaf may be changed, subject to the restrictions in 13.2.2.1 and/or 13.2.2.2 and subject to the length of the leakage path not being extended.

7.4 HARDWARE AND FITTINGS

Elements of hardware or ironmongery and/or their fixing technique may not be changed without extended application evaluation.

The positioning of elements of hardware or ironmongery may be modified for ambient temperature (S_a) smoke application but shall not be changed for medium temperature (S_{200}) applications.

7.5 SEALS

As the sealing system is a critical part of the test, no modification may be made to the system tested.

First

F. Mishahrawi B.Sc. Project Leader Fire Resistance – and Smoke Control

G.M. Klijn B.Sc. Project Leader Fire Resistance – and Smoke Control